Learning to Compose Neural Networks for Question Answering (a.k.a. Dynamic Neural Module Networks)

Authors: Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein Presented by: K.R. Zentner

Basic Outline

- Problem statement
- Brief review of Neural Module Networks
- New modules
- Learned layout predictor
- Some minor additions
- Results
- Conclusion

Problem Statement

Would like to have a single algorithm for a variety of question answering domains.

More precisely, given a question q and a world w, produce an answer y.

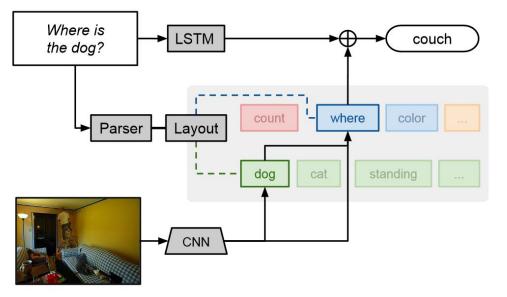
q is a natural language question, y is a label (or boolean), w can be visual or semantic.

Would like to work well with a small amount of data, but still benefit from significant amounts of data.

Neural Module Networks

Answer a question over an input (image only), in two steps:

1. *Layout* a network from the question.



2. *Evaluate* the network on the input.

Neural Module Networks

Two large weaknesses:

1. What if we don't have an image as input?

2. What if dependency parsing results in a bad network layout?

What if we don't have an image as input?

Replace Image with "World"

- The "World" is an arbitrary set of vectors.
- Still use attention across the vectors.
- Treat image as world by operating after the CNN.
- NMN modules assume CNN / Image!

New Modules!

Neural Module Network	Dynamic Neural Module Network		
attend[word]: $Image \rightarrow Attention$	find[word]: (World) → Attention		
	lookup[word]: () → Attention		
re-attend[word]: Attention \rightarrow Attention	relate[word]: (World) Attention \rightarrow Attention		
combine[word]: Attention x Att> Attention	and: Attention* → Attention		
classify[word]: Image x Attention \rightarrow Label	describe[word]: (World) Attention \rightarrow Labels		
measure[word]: <i>Attention</i> → <i>Label</i>	exists: Attention \rightarrow Labels		

$\textbf{Attend} \rightarrow \textbf{Find}$

Neural Module Network	Dynamic Neural Module Network		
attend[word]: Image \rightarrow Attention	find[word]: (World) → Attention		
A convolution.	"An MLP:" softmax(a ₀ σ(Bvi ⊕ CW ⊕ d))		
attend[dog]	find[dog] Or find[city]		
Generates an attention over the <i>Image</i> .	Generates an attention over the World.		

" " \rightarrow Lookup

Neural Module Network	Dynamic Neural Module Network	
	lookup[word]: () → Attention	
	A know relation: ef(i)	
	lookup[Georgia]	
	For words with constant attention vectors.	

$\textbf{Re-attend} \rightarrow \textbf{Relate}$

Neural Module Network	Dynamic Neural Module Network		
re-attend[word]: <i>Attention</i> → <i>Attention</i>	relate[word]: (World) Attention → Attentio		
$(FC \rightarrow ReLU) \ge 2$	softmax(a $\circ \sigma(Bv_i \oplus CW \oplus Dw(h) \oplus e))$		
re-attend[above]	relate[above] Of relate[in]		
Generates a new attention over the Image.	Generates a new attention over the World.		

$\textbf{Combine} \rightarrow \textbf{And}$

Neural Module Network	Dynamic Neural Module Network		
combine[word]: Attention x Att. \rightarrow Attention	and: <i>Attention</i> * → <i>Attention</i>		
Stack \rightarrow Conv. \rightarrow ReLU	h1 ₀ h2 ⊚		
<pre>combine[except]</pre>	and		
Combines two <i>Attentions</i> in an arbitrary way.	Multiplies attentions (analogous to set intersection).		

$\textbf{Classify} \rightarrow \textbf{Describe}$

Neural Module Network	Dynamic Neural Module Network		
classify[word]: Image x Attention \rightarrow Label	describe[word]: (World) Attention → Labels		
Attend \rightarrow FC \rightarrow Softmax	softmax(Aσ(Bw(h) + vi))		
classify[where]	<pre>describe[color] Of describe[where]</pre>		
Transforms an <i>Image</i> and <i>Attention</i> into a <i>Label.</i>	Transforms a <i>World</i> and <i>Attention</i> into a <i>Label</i> .		

$\textbf{Measure} \rightarrow \textbf{Exists}$

Neural Module Network	Dynamic Neural Module Network		
measure[word]: <i>Attention</i> → <i>Label</i>	exists: Attention \rightarrow Labels		
$FC {\rightarrow} ReLU {\rightarrow} FC {\rightarrow} Softmax$	softmax((argmax h) a + b)		
measure[exists]	exists		
Transforms just an Attention into a Label.	Transforms just an Attention into a Label.		

What if dependency parsing results in a bad network layout?

New layout algorithm!

NMN

- Dependency parse
 - $\circ \qquad \mathsf{Leaf} \to \mathsf{attend}$
 - $\circ \qquad \text{Internal (arity 1)} \rightarrow \text{re-attend}$
 - $\circ \qquad \text{Internal (arity 2)} \rightarrow \text{combine}$
 - $\circ \qquad \mathsf{Root} \ (\mathsf{yes/no}) \to \mathsf{measure}$
 - $\circ \qquad \mathsf{Root} \ \mathsf{(other)} \to \mathsf{classify}$
- Layout of network strictly follows structure of dependency parse tree.

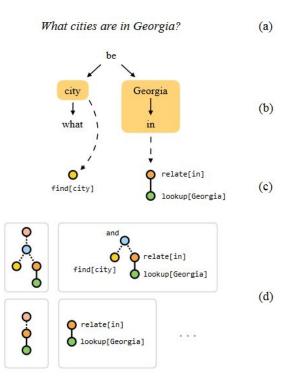
Dynamic-NMN

- Dependency parse
 - \circ Proper nouns \rightarrow lookup
 - $\circ \qquad \mathsf{Nouns} \And \mathsf{Verbs} \to \mathsf{find}$
 - $\circ \qquad \text{Prepositional phrase} \rightarrow \text{relate + find}$
- Generate candidate layouts from subsets of fragments.
 - and all fragments in subset
 - measure or combine
- "Rank" layouts with structure predictor.
- Use highly ranked layout.

New layout algorithm!

Only possible because "and" module has no parameters.

Structure predictor doesn't have any direct supervision. How can we train it?



Structure Predictor?

Computes $h_q(x)$ by passing LSTM over question.

Computes featurization $f(z_i)$ of ith layout.

Sample layout with probability $p(\underline{z_i} \mid x; \theta_l) = \operatorname{softmax}(a \cdot \sigma(B h_q(x) + C f(\underline{z_i}) + d))$

How to train Structure Predictor?

Use a gradient estimate, as in REINFORCE (Williams, 1992).

Want to perform an SGD update with $\nabla J(\theta_l)$.

```
\mathsf{Estimate} \, \nabla \mathbf{J}(\theta\_\mathbf{l}) = \mathbf{E}[\nabla \log \mathbf{p}(\mathbf{z} \mid \mathbf{x} ; \theta\_\mathbf{l}) \cdot \mathbf{r}]
```

```
Use reward r = \log p(y | z, w; \theta_e)
```

Step in direction $\nabla \log p(z \mid x; \theta_l) \cdot \log p(y \mid z, w; \theta_e)$

With small enough learning rate, estimate should converge.

New Dataset: GeoQA (+ Q)

- Entirely semantic: database of relations.
- Very small: 263 examples.
- (+ Q) adds quantification questions (e.g. What cities are in Texas? → Are there any cities in Texas?)
- State of the art results.
 - Compared to 2013 baseline and NMN.

	Accuracy		
Model	GeoQA	GeoQA+Q	
LSP-F	48		
LSP-W	51	s 	
NMN	51.7	35.7	
D-NMN	54.3	42.9	

Table 2: Results on the GeoQA dataset, and the GeoQA dataset with quantification. Our approach outperforms both a purely logical model (LSP-F) and a model with learned perceptual predicates (LSP-W) on the original dataset, and a fixed-structure NMN under both evaluation conditions.

Old Dataset: VQA

- Need to add "passthrough" to final hidden layer.
- Once again uses pre-trained VGG network.
- Slightly improved state of the art.

	test-dev			test-std	
	Yes/No	Number	Other	All	All
Zhou (2015)	76.6	35.0	42.6	55.7	55.9
Noh (2015)	80.7	37.2	41.7	57.2	57.4
Yang (2015)	79.3	36.6	46.1	58.7	58.9
NMN	81.2	38.0	44.0	58.6	58.7
D-NMN	81.1	38.6	45.5	59.4	59.4

Table 1: Results on the VQA test server. NMN is the parameter-tying model from Andreas et al. (2015), and D-NMN is the model described in this paper.

Weaknesses?

- Can only generate very flat layouts, with only one conjunction or quantifier.
- Gradient estimate probably much more expensive / unstable than true gradient.
- Not any simpler than NMN, which are already considered complex.
- Similar in spirit but not implementation to Neural Symbolic VQA (Yi et. al. 2018).
- Much more complex than Relation Networks (Santoro et. al. 2017).

Questions? Discussion.