
Learning to Compose Neural Networks for Question
Answering (a.k.a. Dynamic Neural Module Networks)

Authors: Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein
Presented by: K.R. Zentner

Basic Outline

● Problem statement

● Brief review of Neural Module Networks

● New modules

● Learned layout predictor

● Some minor additions

● Results

● Conclusion

Problem Statement

Would like to have a single algorithm for a variety of question answering domains.

More precisely, given a question q and a world w, produce an answer y.

q is a natural language question, y is a label (or boolean), w can be visual or semantic.

Would like to work well with a small amount of data, but still benefit from significant amounts of data.

Neural Module Networks

Answer a question over an input (image

only), in two steps:

1. Layout a network from the question.

2. Evaluate the network on the input.

Neural Module Networks

Two large weaknesses:

1. What if we don’t have an image as input?

2. What if dependency parsing results in a bad network layout?

What if we don’t have an image as
input?

Replace Image with “World”

● The “World” is an arbitrary set of vectors.

● Still use attention across the vectors.

● Treat image as world by operating after the CNN.

● NMN modules assume CNN / Image!

New Modules!

Neural Module Network Dynamic Neural Module Network

attend[word]: Image → Attention find[word]: (World) → Attention

lookup[word]: () → Attention

re-attend[word]: Attention → Attention relate[word]: (World) Attention → Attention

combine[word]: Attention x Att. → Attention and: Attention* → Attention

classify[word]: Image x Attention → Label describe[word]: (World) Attention → Labels

measure[word]: Attention → Label exists: Attention → Labels

Attend → Find

Neural Module Network Dynamic Neural Module Network

attend[word]: Image → Attention find[word]: (World) → Attention

A convolution. “An MLP:” softmax(a ๏ σ(Bvi ⊕ CW ⊕ d))

attend[dog] find[dog] or find[city]

Generates an attention over the Image. Generates an attention over the World.

“ “ → Lookup

Neural Module Network Dynamic Neural Module Network

lookup[word]: () → Attention

A know relation: ef(i)

lookup[Georgia]

For words with constant attention vectors.

Re-attend → Relate

Neural Module Network Dynamic Neural Module Network

re-attend[word]: Attention → Attention relate[word]: (World) Attention → Attention

(FC → ReLU) x 2 softmax(a ๏ σ(Bvi ⊕ CW ⊕ Dw(h) ⊕ e))

re-attend[above] relate[above] or relate[in]

Generates a new attention over the Image. Generates a new attention over the World.

Combine → And

Neural Module Network Dynamic Neural Module Network

combine[word]: Attention x Att. → Attention and: Attention* → Attention

Stack → Conv. → ReLU h1 ๏ h2 ๏ …

combine[except] and

Combines two Attentions in an arbitrary
way.

Multiplies attentions (analogous to set
intersection).

Classify → Describe

Neural Module Network Dynamic Neural Module Network

classify[word]: Image x Attention → Label describe[word]: (World) Attention → Labels

Attend → FC → Softmax softmax(Aσ(Bw(h) + vi))

classify[where] describe[color] or describe[where]

Transforms an Image and Attention into a
Label.

Transforms a World and Attention into a
Label.

Measure → Exists

Neural Module Network Dynamic Neural Module Network

measure[word]: Attention → Label exists: Attention → Labels

FC→ ReLU → FC → Softmax softmax((argmax h) a + b)

measure[exists] exists

Transforms just an Attention into a Label. Transforms just an Attention into a Label.

What if dependency parsing
results in a bad network layout?

New layout algorithm!

NMN
● Dependency parse

○ Leaf → attend
○ Internal (arity 1) → re-attend
○ Internal (arity 2) → combine
○ Root (yes/no) → measure
○ Root (other) → classify

● Layout of network strictly
follows structure of dependency
parse tree.

Dynamic-NMN
● Dependency parse

○ Proper nouns → lookup
○ Nouns & Verbs → find
○ Prepositional phrase → relate + find

● Generate candidate layouts from subsets of
fragments.

○ and all fragments in subset
○ measure or combine

● “Rank” layouts with structure predictor.
● Use highly ranked layout.

New layout algorithm!

Only possible because “and” module has no
parameters.

Structure predictor doesn’t have any direct
supervision. How can we train it?

Structure Predictor?

Computes h_q(x) by passing LSTM over question.

Computes featurization f(z_i) of ith layout.

Sample layout with probability p(z_i | x; 𝜃_l) = softmax(a・σ(B h_q(x) +C f(z_i) +d))

How to train Structure Predictor?

Use a gradient estimate, as in REINFORCE (Williams, 1992).

Want to perform an SGD update with ∇J(𝜃_l).

Estimate ∇J(𝜃_l) = E[∇log p(z | x ; 𝜃_l) ・r]

Use reward r = log p(y | z, w; 𝜃_e)

Step in direction ∇log p(z | x ; 𝜃_l) ・log p(y | z, w; 𝜃_e)

With small enough learning rate, estimate should converge.

New Dataset: GeoQA (+ Q)

● Entirely semantic: database of relations.

● Very small: 263 examples.

● (+ Q) adds quantification questions (e.g.

What cities are in Texas? → Are there any

cities in Texas?)

● State of the art results.
○ Compared to 2013 baseline and NMN.

Old Dataset: VQA

● Need to add “passthrough” to final hidden

layer.

● Once again uses pre-trained VGG network.

● Slightly improved state of the art.

Weaknesses?

● Can only generate very flat layouts, with only one conjunction or quantifier.

● Gradient estimate probably much more expensive / unstable than true gradient.

● Not any simpler than NMN, which are already considered complex.

● Similar in spirit but not implementation to Neural Symbolic VQA (Yi et. al. 2018).

● Much more complex than Relation Networks (Santoro et. al. 2017).

Questions? Discussion.

